Generalized Automated Maintenance Environment

Objectives

- Overview of gAME and What Has Been Accomplished
- Overview of How it Works
- Additional Capabilities
 - Modify the Maintenance Plan
 - Offline Toolkit
- Conclusion

Raytheon and AME

- Successfully Responded to a BAA from ONR and PMA-265
 - Provide a COTS IDE to support the F/A-18 AME
 - Solutions must be open architecture and generalized in applicability.
 - I Not weapon system or aircraft platform specific
- Formed a team of vendors providing world class software solutions, resulting in the generalized Automated Maintenance Environment (gAME)
- F/A-18 E/F OPEVAL chose core asset management component as ECAMS Replacement
 - Selected to use gAME architecture approach as risk mitigation to OOMA support of OPEVAL
 - I Referred to as SuperHornet AME (sAME)

Objective: generalized Automated Maintenance Environment (gAME)

- To provide customers an open architecture infrastructure to provide for integrating COTS software and legacy solutions.
- Use existing communications systems to provide all supportability requirements and improve the readiness of our weapons & defense systems.
- The generalized AME will further improve the effectiveness of the maintainers by providing electronic training and assistance while providing "real-time" support for battle damage assessment in times of conflict.

Key Features

- generalized AME team provides an integrating infrastructure
 - Open architecture environment
 - Make full use of legacy investments
 - Easily integrates into existing Information Systems
 - I Mission Planning
 - I Training
 - I Depot Repair and CLS
 - I Parts Distribution
 - Compliant with a DoD related initiatives
- Provides digital supportability information increasing the timeliness and accuracy of data.

Key Features (con't)

Totally COTS based

- Provides transparent insertion of new latest computer technology with little or no cost to the customer.
- Customer costs are based on scaleable use fee I Can be implemented by platform, or by function

Provides:

- Component Base Tracking
- Network and Satellite connectivity
- Configuration/Asset Management
- Logistics Planning Tools
- Prognostics/Diagnostics
- Training
- Reporting
- Depot Activities
- Base Supply and Parts Distribution

What's Been Accomplished?

- Built an integrated team of domain experts.
- Provided Core Configuration/Asset Management module to support F/A-18 E/F OPEVAL (sAME)
 - Interfaced with existing functional technology investments.
 - LETM's
 - Pilot Debrief
 - Data Stripping Unit
 - Life Usage Index (LUI) Calculator

 - Engine Diagnostics Help Request Document (HRD)
 - Developed LAN/WAN architecture for global deployment.

Benefits to F/A-18

- Resolves 10 of 18 Readiness I ssues
- Resolved ECAMS Y2K Problem
- Compliments legacy NALCOMIS and other systems with COTS solutions
- Provides Point-Of-Maintenance (POM) entry of data that is integrated with the next level of maintenance.
 - Data collected at O-Level is transmitted to the I-Level.
 - Data collected at I-Level is transmitted to the Depot, and/or OEM.
 - All fleet-wide data is made available at the up-line repositories.
- Provides Annual Cost Savings
 - Multiple legacy systems can be terminated.
 - Eight percent labor cost reduction.
 - Five percent material cost reduction by improved asset management.

Overview of How it Works

Modules at O-Level

- Download/Data Stripping
- SAFE File Generator
- LUI Calculator
- Applications/Session Manager
- Debrief
- IETMs/HRD(TMDR)
- Configuration/Asset Management
- Engine Diagnostics

A Flight→Usage Accrual & Debrief

■ What Occurs:

- I An aircraft flies
- I The MU is brought in and stripped by the Pilot. The data is copied to ADFs on the AME PC
- I The Debrief module is launched at the end of the download
- I A pilot validates/adds any faults using the Data Stripping and Debrief modules
- I In the background, usage is extracted from the MU data and applied to the aircraft records in Configuration and Asset Management Database
- I gAME modules involved:
 - | Applications/Session Manager
 - □ Data Stripping
 - | F414 LUI Calculator
 - Debrief
 - | Maintenix/OOMA

Debrief Logs any Additional Discrepancies

- The pilot reviews the faults identified by the expert system and adds any other discrepancies
- Suggested maintenance tasks are passed to Maintenix/OOMA

Background Processing of Aircraft Data

- Engine LUIs are extracted from the aircraft data and applied to Maintenix/OOMA
- SAFE files are created with the structural data
- The Engine trending and diagnostics data set is updated with new data

NAVFLIR Completion

- The pilot completes a NAVFLIR in NALCOMIS
- A maintainer enters the landing data in Data Stripping to complete the SAFE file and provide landings as usage data to Maintenix/OOMA

Maintenance Scheduling and Execution

■ What Occurs:

- A maintenance action initiated by Debrief
- A maintenance action initiated by engine LUI data reaching the life limit
- I The maintenance "due list" for the aircraft automatically updated to reflect the new maintenance actions
- An engine removal and transfer to IMA for overhaul
- The aircraft left in an operational state

■ gAME modules involved:

- Maintenix/OOMA
- Applications/Session Manager
- I LETMs

Auto Scheduling

Recall

- The Debrief expert system analysis suggested a maintenance task
- The Data Stripping process extracted engine usage (LUIs) from the aircraft data and applied it to the engine records in Maintenix/OOMA.
- The Maintenix/OOMA Operator Status Board, as Maintenance Control's "White Board", is automatically updated to show an overdue task for the subject aircraft.

Maintenance Alerted to Aircraft Caution

- The aircraft is shown with overdue tasks
- The maintenance tasks are shown
 - Debrief task is to repair GPS receiver
 - I the LUI increase has caused an engine turbine to go 'high-time', requiring an engine removal

Identify Maintenance Tasks

- Maintenix/OOMA shows all upcoming work for the squadron to Maintenance Control
 - Work can be sorted to facilitate planning
- Maintenance
 Control initiates
 MAFs NALCOMIS
 based on the
 Maintenix tasks

Download I ETMS to PEDD

- Session Manager gets a list of maintenance tasks from Maintenix/OOMA
- This information is used to download IETMS links to the PEDD

AIMSS™ Class 5

- database
- hierarchical
- non-redundant
- relational links
- context filters

Execute Maintenance Tasks

■ The maintainer takes the PEDD out to the aircraft and uses the IETMs while executing the maintenance tasks

Upload the Maintenance Done from the PEDD

- The PEDD records serialized component changes
- The Session Manager is used to upload the maintenance done on the aircraft into Maintenix

IETMS TPDR

- Create a bookmark in I ETMS when a problem is suspected
- I nitiate HRD with the IETMS bookmark to create a TPDR

Evaluate the TPDR

- The TPDR is transferred to I SEA by the HRD system
- The TPDR is evaluated and used to update new releases of IETMS

Complete the MAF and sign off the work in Maintenix

- The MAFs are completed in NALCOMIS
- Maintenance Control signs off the uploaded tasks in Maintenix

Aircraft Status is updated

- The PEDD upload installed the new engine in the aircraft logset
- The Status Board now shows the aircraft as ready to fly

The Removed Engine's Logset is Intact

- The high-time engine is now out of the aircraft
- The engine logset is intact

Transfer Engine Logset to IMA

- The engine (with the entire engine logset) is placed in the IMA inbox
- The transfer takes place automatically in the background

What's in the near Future?

Additional Capabilities

Modify a Maintenance Plan

■ What Occurs:

- A new TD has been approved for the engine
- "Fleet Management" creates the electronic TD task
 ONCE as a baseline data modification
- This modification is broadcast automatically to affected sites.
- The TD appears as a "due" task in the aircraft's maintenance due list.
- gAME Modules involved:
 - Maintenix/OOMA

Define TD as a new Task

- TD is entered at central repository
- Define:
 - Applicability criteria
 - Tools required
 - Consumables required
 - Part and labor costs
 - Part Number Transformation

TD Broadcast to Those Affected

- TD task automatically created against target aircraft
- TD task automatically appears in aircraft / engine maintenance due list
- TD record follows the engine so status of TD always known

Offline Toolkit

- What Occurs:
 - Engine performance trending analysis
 - Engine flight summary
- gAME Modules involved:
 - F414 Trend Explorer
 - F414 Engine Flight Summary

Typical Engine Trending

- Scenario
 - View engine degradations over time
- Display Engine Trend parameters & inform maintainer of trend alerts:
 - I Specific Fuel
 Cons'n, Thrust,
 Turbine Exit
 Temperature, Fan
 Vibe, Core Vibe,
 Turbine Exit
 Pressure, Oil
 Pressure

Typical Flight Summary

- Scenario
 - Relate pilot gripes to MU records
- Purpose
 - Provide a breadth-first view of engine data for a selected ADF
 - MSP Codes, Cautions, Pilot Saves, Thrust Checks, Mission Profile

Conclusion

- Raytheon has several years experience managing the technologies specific to an Enterprise Maintenance Management task.
 - I This experience provides significant contribution to overall program risk reduction.
- To Raytheon, gAME is not a product set! It represents an integrated, open architecture, modular solution to maintenance management challenges.
 - Methodologies demonstrated in sAME

